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Pumping Lemma for Quantum Automata

Ruqian Lu1,2,3,4,6 and Hong Zheng5

Received

Not all lattice-valued quantum automata possess the pumping property in its strict
form. However the pumping lemma can be generalized, and all lattice-valued quantum
automata possess the generalized pumping property.

KEY WORDS: pumping lemma; generalized pumping lemma; lattice-valued quantum
automata.

1. INTRODUCTION

The pumping lemma is a classical and important concept in formal language
theories. It plays a crucial role in recognizing the family of regular languages and
also of context free languages. When generalizing traditional finite state automata
to quantum automata, it is natural to ask whether something like the pumping
lemma still exists in the new theory and what kind of role it plays. Many authors
have discussed this problem. With respect to finite state quantum automata on
Hilbert Spaces, Moore and Crutchfield (2000) have proved a weak form of pumping
lemma, which states that, in some sense, the acceptance degree of the pumped
input string uvi w can approximate that of the original string uvw to any degree
of exactness. On the other hand, Ying has proved a pumping lemma of lattice-
valued finite state quantum automata (lfqa for short) under the assumption of
some quantum logic rules (Ying, 2000a,b). Qiu also published a similar lemma
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while generalizing the lfqa concept (Qiu, 2003). All these works are based on a
formulation of the pumping lemma that is quite similar to that in traditional finite
state automata theory (Hopcroft and Ullman, 1979). Since the acceptance of an
input string by a lfqa has to get rid from the two-valued Boolean framework (a
dichotomy of accepted or rejected) and based on lattice values (using lattice value
to represent the degree of acceptance), the pumping lemma in quantum case should
also stay away from the (0, 1) switch and follow the lattice-valued approach.

In this paper, we will introduce a new concept of pumping property for lfqa and
prove a series of results with respect to this concept. The main result of this paper is
the conclusion that the traditional pumping lemma can be generalized such that the
generalized pumping lemma holds for lattice-valued finite state quantum automata.

2. BASIC DEFINITIONS OF LATTICE-VALUED
FINITE STATE QUANTUM AUTOMATA

First we repeat the definition of a lfqa defined by Ying (Ying, 2000a) in a
slightly different notation. At the same time we introduce a new version of lfqa
and compare their acceptance characteristics.

Definition 2.1. (Ying, 2000a). Let l = (L , ≤, 0, 1) be a lattice, � be a finite input
alphabet. A lfqa R defined on (l, �) is a quadruple R = (Q, I , T , ∆ ), where I ⊆ Q
is a set of initial states, T ⊆ Q is a set of terminating states, ∆ is a set of l valued
functions defined on Q × � × Q: for each q1, q2 ∈ Q and x ∈ �, δ(q1, x , q2) ∈
∆ is an element of l. Note that only those δ(q1, x , q2), which are not equal to 0
(least element of l) are listed in ∆ . δ(q1, x , q2) is called the acceptance degree of
x that the state q1 is transformed to q2 when the symbol x is inputted. Intuitionally,
corresponding to each δ(q1, x , q2), a pair (x , δ(q1, x , q2)) is attached to the arc
from q1 to q2.

Definition 2.2. (Lu and Zheng, 2003). The lfqa are classified in type A lfqa and
type B lfqa according to the way the acceptance degree of a whole input string is
calculated.

Let R = (Q, I , T , ∆ ) be a lfqa defined on (l, �). For each i, j, where
δ(qi , x , q j ) 	= 0, the pair (x , δ(qi , x , q j )) is called a transition for the segment
qi (x , δ(qi , x , q j ))q j of R. A finite connection of segments q0(x1, δ(q0, x1, q1))q1

(x2, δ(q1, x2, q2)) · · · qn−1(xn , δ(qn−1, xn , qn))qn is called a segment sequence of
R, where all qi belong to Q and all xi belong to �. A simplified segment sequence
is a segment sequence where the acceptance degree δ(qi , x , q j ) of each transition
does not appear explicitly. We get the label of a simplified segment sequence if
all its states are dropped. In the above example, w = q0x1q1x2q2 · · · qn−1xnqn is
a simplified segment sequence, x1x2 · · · xn is its label. If q0 belongs to I and qn
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belongs to T , then we say the (simplified) segment sequence is a (simplified) path
of R. Correspondingly, we call the symbol sequence s = x1x2 · · · xn an accepted
string of the automaton R. Sometimes we will drop the word “simplified” in the
remaining part of this paper, if no ambiguity will be raised.

The acceptance degree of s by this single path is defined as: Acceptw (R, s) =
∩n−1

i=0 δ(qi , xi+1, qi+1), where ∩ is the meet operation of the lattice l.
Since the automaton R is in general nondeterministic, we have to calcu-

late the acceptance degree of an input string s by integrating its acceptance de-
grees along all paths of R. Let T (R, s) = {w |w is a path of R, s is the accepted
input string along this path w}. It is easy to prove that |T (R, s)| is finite for
every s. Since now the states q depend on the paths w , we write qw ,i instead
of qi .

For type A lfqa, the acceptance degree of s by R is defined as

AcceptA(R, s) = ∪
w∈T (R,s)

n−1∩
i=0

δ(qw ,i , xi+1, qw ,i+1) (1)

For type B lfqa, the acceptance degree of s by R is defined as

AcceptB(R, s) = n−1∩
i=0

∪
w∈T (R,s)

δ(qw ,i , xi+1, qw ,i+1) (2)

where qw ,i , i = 0, 1, 2, . . . , n, are the states traversed by the path w . ∪ and ∩
are the two lattice operations join and meet. In a word, in the case of type A,
we first calculate the acceptance degree of s for each single path, and then unite
them together. In the case of type B, we take the first segment of all paths in
T (R, s), unite their acceptance degrees δ(qw ,0, x1, qw ,1) together by the opera-
tion ∪. And then we take the second, third, . . . transition of all paths and unite
their acceptance degrees together separately by the same operation. At last, we
perform the operation ∩ on all these united values and get the wanted gen-
eral acceptance degree of s by R. In any case, the language accepted by R is
{(s, Accept(R, s))|s ∈ �∗}.

Example 2.1. Let R = ({q0, q1, q2, q3}, {q0}, {q2, q3}, {δ(q0, x , q1) = a,
δ(q1, y, q2) = b, δ(q1, y, q3) = c}). There are two paths for accepting the string xy
in this automaton: w1 = q0xq1 yq2 and w2 = q0xq1 yq3. The single path acceptance
degrees are Acceptw1

(R, xy) = a ∩ b and Acceptw2
(R, xy) = a ∩ c respectively.

The general acceptance degree for type A is AcceptA(R, xy) = (a ∩ b) ∪ (a ∩ c).
On the other hand, The general acceptance degree for type B is AcceptB(R, xy) =
a ∩ (b ∪ c). See Fig. 1 for an illustration.

We all know that for any elements a, b, and c of a lattice l, the follow-
ing inclusion rule holds: (a ∩ b) ∪ (a ∩ c) ≤ a ∩ (b ∪ c). Thus we have AcceptA
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Fig. 1. Type A and type B lqfa.

(R, xy) = (a ∩ b) ∪ (a ∩ c) ≤ a ∩ (b ∪ c) = AcceptB(R, xy). In fact, we have the
more general.

Proposition 2.1. For any lfqa R, the general acceptance degrees, called recog-
nizability in Ying (2000a), calculated according to rules of type A and type B have
the relationship:

1. AcceptA(R, s) ≤ AcceptB(R, s)
2. The inclusion symbol ≤ can be replaced by the equation symbol = if R is

a deterministic lfqa.
3. Let P be a set of paths accepting the string s in the lfqa R, p be any path

accepting the same string s. Then it is always

AcceptA, P (R, s) ≤ AcceptA, P∪{p}(R, s) (3)

AcceptB, P (R, s) ≤ AcceptB, P∪{p}(R, s) (4)

where AcceptA, P (R, s) means the acceptance degree of s along all paths
belonging to P in case of type A. This explains also other notations in
these expressions.

Proof: We prove only 3. Parts 1 and 2 are proved in Lu and Zheng (2003). Let
R be a lfqa. For any s = x1x2 . . . xm , s ∈ �∗, assume k paths for accepting the
string s in this automaton. Let P be the set of paths. P = {w1, w2 . . . , wk}. Now
assuming p is another path for accepting the string s and p /∈ P .

The paths for accepting the string s are as follows:

wi = q0(x1, a1i ) q1i (x2, a2i ) q2i . . . qm−1, i (xm , ami ) qmi ,

a1i , a2i . . . , ami ∈ L , 1 ≤ i ≤ k

p = q0(x1, b1) q1(x2, b2) q2 . . . qm−1(xm , bm) q f ,

b1, b2 . . . , bm ∈ L , qmi , q f ∈ T
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For type A lfqa,

AcceptA, P (R, s) = Acceptw1
(R, s) ∪ Acceptw2

(R, s) ∪ . . . ∪ Acceptwk
(R, s)

AcceptA, P∪{p}(R, s) = Acceptw1
(R, s) ∪ . . . ∪ Acceptwk

(R, s) ∪ Acceptp(R, s)

It is obvious that AcceptA, P (R, s) ≤ AcceptA, P∪{p}(R, s) holds.
For type B lfqa, we first prove a general inclusion relation:

If for each i, bi ≤ ai , then for each m, b1 ∩ b2 ∩ . . . ∩ bm ≤ a1 ∩ a2 ∩ . . . ∩ am

(6)

The proof of this relation is easily done by mathematical induction if we con-
sider the fact b1 ∩ b2 = b1 ∩ a1 ∩ b2 ∩ a2 = b1 ∩ b2 ∩ a1 ∩ a2 ≤ a1 ∩ a2, where
we have made use of the rules of associativity and commutativity. Note that

AcceptB, P (R, s) = (a11 ∪ a12 ∪ . . . ∪ a1k) ∩ (a21 ∪ a22 ∪ . . . ∪ a2k) ∩ . . .

∩(am1 ∪ am2 ∪ . . . ∪ amk)

AcceptB, P∪{p}(R, s) = (a11 ∪ a12 ∪. . .∪ a1k ∪ b1) ∩ (a21 ∪ a22 ∪ . . .

∪a2k ∪ b2) ∩ . . . ∩ (am1 ∪ am2 ∪ . . . ∪ amk ∪ bm)

So we have AcceptB, P (R, s) ≤ AcceptB, P∪{p}(R, s) by considering (6). �

3. THE PUMPING PROPERTIES

Definition 3.1. (Pumping Property of Lattice-Valued Quantum Automata). A
lattice-valued finite state quantum automaton R is said to have pumping property,
if there exists a positive integer n, which depends only on R such that for each input
string s ∈ �∗, with |s| > n and Accept(R, s) = a, where a belongs to the lattice
l, it is always possible to decompose s in s = uvw , such that |uv| ≤ n, |v| ≥ 1,
and for each i ≥ 1, Accept(R, uvi w) = a.

Theorem 3.1. Each deterministic finite state quantum automaton has pumping
property.

Proof: The idea is similar to that in the case of a usual finite state automaton.
Let n be the number of the states of the quantum automaton. For any accepted
string s whose length is larger than n, the path it traverses contains at least two
equal states q1 and q2. Thus, the segment between q1 and q2 forms a loop, which
can be repeated arbitrary times. That means s can be divided in s = uvw , where
v corresponds to the loop, such that for each positive i, uvi w is also accepted by
the quantum automaton. Because of its deterministic character, for each i there is
only one path p(i), which accepts uvi w , and the acceptance degree is equal to the
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join of all lattice values attached to the segments of p(i). Thus, to go a loop more
is just to repeat the join of the same lattice values once more. It won’t change the
total acceptance degree. Therefore, we see the classical pumping lemma is also
valid in the sense of deterministic lfqa. �

From the proof given above we get a more strict form of pumping lemma.

Definition 3.2. A lattice-valued finite state quantum automaton R is said to have
strict pumping property, if the positive integer mentioned in Theorem 3.1 is at most
equal to the number of states of the automaton R.

Corollary 3.1. Each deterministic finite state quantum automaton has the strict
pumping property.

For the usual finite state automata, the strict pumping lemma always holds
no matter whether it is deterministic or not. But this is not true in case of non-
deterministic lattice-valued finite state quantum automata, because there may be
more than one path that accepts the same string uvi w . Let p(i, j) denote the j-th
path accepting uvi w . Then the existence of p(i, j) does not guarantee the ex-
istence of p(i + 1, j), and vice versa. This fact can be shown by the following
theorem.

Theorem 3.2. Neither type A, nor type B lattice-valued finite state quantum
automata have strict pumping property.

Proof: Consider the lfqa R depicted in Fig. 2: where q0 is the initial state and
q f is the final state. There are in total six states.

Fig. 2. A lfqa not having strict pumping property.
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We consider the string s = x3 yx3t , whose length equals to 8, larger than the
number of states. The string s is accepted by R on two paths w1 and w2, where

w1 = q0(x , a) q1(x , b) q2(x , b) q3(y, d) q0(x , a) q1(x , b)

q2(x , b) q3(t , g)q f

Acceptw1
(R, s) = a ∩ b ∩ d ∩ g

w2 = q0(x , a) q1(x , b) q2(x , b) q3(y, e) q1(x , b) q2(x , b)

q3(x , c) q4(t , f ) q f

Acceptw2
(R, s) = a ∩ b ∩ c ∩ e ∩ f

It is easy to see that there is no other path, which accepts s. Therefore, when
this automaton is interpreted as type A lfqa, we have

AcceptA(R, s) = (a ∩ b ∩ d ∩ g) ∪ (a ∩ b ∩ c ∩ e ∩ f ) (7)

On the other hand, when it is interpreted as type B lfqa, we have:

AcceptB(R, s) = a ∩ b ∩ (d ∪ e) ∧ (a ∪ b) ∧ (b ∪ c) ∩ (g ∪ f )

= a ∩ b ∩ (d ∪ e) ∩ (g ∪ f ) (8)

We will prove that it is impossible to represent s = x3 yx3t in form of uvw,
such that s(i) = uvi w is accepted for arbitrary i with the same acceptance degree
as s is accepted.

Assume this conclusion were not true. That means the desired decomposi-
tion of s in uvw were possible and AcceptA(R, s(i)) = AcceptA(R, s), AcceptB
(R, s(i)) = AcceptB(R, s) for all i > 0. Then v must correspond to some loop of
the automaton.

We will check all possible loops in R. From Fig. 2 we see that R contains
only two loops. We denote them with Loop (above): q0q1q2q3q0 and Loop (below):
q1q2q3q1, respectively. Each accepted input string traverses the two loops Loop
(above) and/or Loop (below) finite times. The general form of each accepted
string is:

x3
k∏

i=1

[(yx3)ni (yx2)mi ]x j t (9)

where j = 0 or 1, and ni , mi are non-negative integers, k = 0, 1, 2, 3, . . .

The first half, (yx3)ni , of each bracketed term, represents ni times traversing
Loop (above) while the second half, (yx2)mi , represents mi times traversing Loop
(below) . In case that all mi equal to 0 and j = 0, or when mk = 1, and for all
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i < k, mi = 0, j = 1, the formula (3) becomes:

x3
k∏

i=1

(yx3)ni t = x3(yx3)k t k = 0, 1, 2, 3, . . . (10)

The lfqa of Fig. 2 contains two loops with the following seven possible
representations:

xxxy, xxyx , xyxx , yxxx , xxy, xyx , yxx .

The possible decompositions of s in uvw conforming to these loop representations
are the following seven, where in each case, the substring v is contained in a pair
of parentheses:

s = (x3 y)x3t = x(x2 yx)x2t = x2(xyx2)xt = x3(yx3)t = x(x2 y)x3t

= x2(xyx)x2t = x3(yx2)xt (11)

We use the notation s(i, j) to denote the power i pumping of the j-th loop
representation of s in (11). For example, s(2, 5) = x(xxy)2x3t . We noticed that
these seven loop representations can be classified in two equivalent groups. The
first four loop representations form a group, since.

s(i, 1) = (x3 y)i x3t = (x3 y)(x3 y)i−1x3t = x3(yx3)i t = s(i, 4)

s(i, 2) = x(x2 yx)i x2t = x(x2 yx)(x2 yx)i−1x2t = x3(yx3)i t = s(i, 4)

s(i, 3) = x2(xyx2)i xt = x2(xyx2)(xyx2)i−1xt = x3(yx3)i t = s(i, 4)

Let us have a closer look at the loop representation s(i, 4) and check which
paths it will traverse when it is accepted by the automaton. There are two paths
accepting s(i, 4). The first path w1(i, 4) can be illustrated as:

w1(i, 4) = q0(x , a) q1(x , b) q2(x , b) [q3(y, d)

q0(x , a) q1(x , b) q2(x , b)]i q3(t , g)q f

It traverses Loop (above) i-times, but makes no use of Loop (below). The second
path w2(i, 4) makes use of Loop (below) and can be illustrated as

w2(i, 4) = q0(x , a) q1(x , b) q2(x , b) [q3(y, d) q0(x , a) q1(x , b) q2(x , b)]i−1

[q3(y, e) q1(x , b) q2(x , b)]q3(x , c) q4(t , f )q f

Note that w2(i, 4) traverses Loop (below) only once and only after all Loop
(above) traverses are made, because traversing Loop (below) twice would produce
a path containing the substring yx2 y, which does not appear in s(i, 4). On the other
hand, the same contradiction would happen if we perform a Loop (above) after a
Loop (below).
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It is also easy to check that these are the only two paths accepting s(i, 4).
Therefore, for all i > 1,

Acceptw1
(R, s(i, 4)) = a ∩ b ∩ d ∩ g

Acceptw2
(R, s(i, 4)) = a ∩ b ∩ c ∩ d ∩ e ∩ f

In summary, for all i > 1,

AcceptA(R, s(i, 4)) = (a ∩ b ∩ d ∩ g) ∪ (a ∩ b ∩ c ∩ d ∩ e ∩ f ) (12)

AcceptB(R, s(i, 4)) = a ∩ b ∩ d ∩ (d ∪ e) ∩ (a ∪ b) ∩ (b ∪ c) ∩ (g ∪ f )

= a ∩ b ∩ d ∩ (g ∪ f ) (13)

We have to prove that for i > 1,

AcceptA(R, s(i, 4)) 	= AcceptA(R, s)

AcceptB(R, s(i, 4)) 	= AcceptB(R, s)

To this end, we construct the lattice l, on which the lfqa R is based, in the
way as it is shown in Fig. 3:
Thus, for i > 1,

AcceptA(R, s(i, 4)) = k 	= a = AcceptA(R, s), (14)

AcceptB(R, s(i, 4)) = k 	= a = AcceptB(R, s) (15)

Above we have proved the theorem for s(i, 1), s(i, 2), s(i, 3), s(i, 4). The
remaining cases are s(i, 5), s(i, 6) and s(i, 7). They also form an equivalent group,
since:

s(i, 5) = x(x2 y)i x3t = x(x2 y)(x2 y)i−1x3t = x3(yx2)i xt = s(i, 7)

s(i, 6) = x2(xyx)i x2t = x2(xyx)(xyx)i−1x2t = x3(yx2)i xt = s(i, 7)

Fig. 3. The lattice l destroying the strict pumping property.
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Therefore we have only to consider the case s(i, 7). We will check which paths
it will traverse when it is accepted by the automaton. There are two paths w1(i, 7)
and w2(i, 7) which accept s(i, 7). w1(i, 7) avoids Loop (above) and traverses only
Loop (below):

w1(i, 7) = q0(x , a) q1(x , b) q2(x , b) [q3(y, e) q1(x , b)

q2(x , b)]i q3(x , c) q4(t , f )q f

It traverses Loop (below) i-times, but makes no use of loop (above). The sec-
ond path w2(i, 7) makes use of both Loop (above) and Loop (below) and can be
illustrated as

w2(i, 7) = q0(x , a) q1(x , b) q2(x , b) [q3(y, e) q1(x , b) q2(x , b)]i−1

q3(y, d) q0(x , a) q1(x , b) q2(x , b) q3(t , g) q f

Note that w2(i, 7) traverses Loop (above) only once and only after all Loop
(below) traverses are made, because traversing Loop (above) twice would produce
a path containing the substring yx3 y, which does not appear in s(i, 7). On the other
hand, the same contradiction would happen if we perform a Loop (above) before
a Loop (below).

It is also easy to check that these are the only two paths accepting s(i, 7).
Therefore, if i > 1,

Acceptw1
(R, s(i, 7)) = a ∩ b ∩ c ∩ e ∩ f

Acceptw2
(R, s(i, 7)) = a ∩ b ∩ d ∩ e ∩ g

In summary, for i > 1,

AcceptA(R, s(i, 7)) = (a ∩ b ∩ c ∩ e ∩ f ) ∪ (a ∩ b ∩ d ∩ e ∩ g) (16)

AcceptB(R, s(i, 7)) = (a ∩ b ∩ b) ∩ (e ∩ b ∩ b)i−1 ∩ (d ∪ e) ∩ (a ∪ b)

∩(b ∪ b) ∩ (b ∪ c) ∩ (g ∪ f )

= a ∩ b ∩ e ∩ (d ∪ e)

∩(a ∪ b) ∩ (b ∪ c) ∩ (g ∪ f )

= a ∩ b ∩ e ∩ (g ∪ f ) (17)

We have to prove that for i > 1,

AcceptA(R, s(i, 7)) 	= AcceptA(R, s),

AcceptB(R, s(i, 7)) 	= AcceptB(R, s),

Consider Fig. 3 once again. We get for i > 1,

AcceptA(R, s(i, 7)) = h 	= a = AcceptA(R, s) (18)
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AcceptB(R, s(i, 7)) = h 	= a = AcceptB(R, s) (19)

We have now examined all possible cases and seen as result that for all s(i, j)
with i > 1 and 1 ≤ j ≤ 7, AcceptA(R, s(i, j)) 	= AcceptA(R, s), and AcceptB
(R, s(i, j)) 	= AcceptB(R, s). The breaking of pumping property for lfqa R in
Fig. 2 is thus proved. �

But this example only shows that the integer n, where n is the number of
states of the automaton, is not big enough for the pumping lemma to hold. We
have not yet proved the proper pumping property for arbitrary lfqa. In order to
show that, we have to extend our definition about pumping property a little bit.
Namely, we need not only a definition for lfqa having pumping property. We need
also a definition for an input string s having pumping property.

Definition 3.3. (Pumping property of an input string of a lattice-valued quantum
automaton). An input string s of a lattice-valued finite state quantum automaton R
is said to have pumping property, if s is accepted by R such that Accept(R, s) = a,
where a belongs to the lattice l, and if it is possible to decompose s in s = uvw ,
such that |v| ≥ 1, and for each i ≥ 1, Accept(R, uvi w) = a.

Proposition 3.2. Any input string s accepted by the automaton R shown in Fig. 2,
where the length of s is larger than n = 12, has the pumping property.

Proof: For the lfqa R in Fig. 2, the general form of each accepted string is:

x3
k∏

i=1

[(yx3)ni (yx2)mi ]x j t

When |s| > 12, the forms of accepted string are as follows:

(1) s = x3[yx3]i x j t , when j = 0, i ≥ 3; when j = 1, i ≥ 2.
(2) s = x3[yx2]i x j t , when j = 0, i ≥ 3; when j = 1, i ≥ 3.

(3) s = x3
k∏

i=1
[(yx3)ni (yx2)mi ]x j t , and the accepted strings not only include

the substring [yx3] but also the substring [yx2]. That is to say both Loop
(above) and Loop (below) must be traversed. More exactly, two copies
of [yx3] or two copies of [yx2] should be in the accepted strings at least.

For the above three forms of accepted strings, we can iterate the reasoning
steps one by one according to Theorem 3.2 and conclude that the accepted strings
have the pumping property. �

Since we cannot yet prove the pumping property in general, we generalize its
definition in the following way.
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Definition 3.4. (Super (Sub)-Pumping Property). A lattice-valued finite state
quantum automaton R is said to have super-pumping property, if there exists a
positive integer n, which depends only on R such that for each input string s ∈ �∗,
with |s| > n and Accept(R, s) = a, where a belongs to the lattice l, it is always
possible to decompose s in s = uvw , such that |uv| ≤ n, |v| ≥ 1, and

for each i ≥ 1, Accept(R, uvi w) ≥ a. (20)

R is said to have sub-pumping property, if the inequality (21) holds instead of (20):

for each i ≥ 1, Accept(R, uvi w) ≤ a. (21)

Definition 3.5. (Periodic Pumping Property). A lattice-valued finite state quantum
automaton R is said to have periodic pumping property, if there exists a positive
integer n, which depends only on R such that for each input string s ∈ �∗, with
|s| > n, it is always possible to decompose s in s = uvw , such that |v| ≥ 1, and
there is a number m > 0 such that,

for each i ≥ m, there is a j > i, Accept(R, uv j w) = Accept(R, uvmw) = a.

R is said to have periodic super-pumping property, if

for each i ≥ m, there is a j > i, Accept(R, uv j w) ≥ Accept(R, uvmw) = a.

R is said to have periodic sub-pumping property, if

for each i ≥ m, there is a j > i, Accept(R, uv j w) ≤ Accept(R, uvmw) = a.

R is said to have periodic monotonic super-pumping property, if

for each i ≥ m and Accept(R, uvi w) ≥ Accept(R, uvmw)

= a, there is a j > i, Accept(R, uv j w) ≥ Accept(R, uvi w).

R is said to have periodic monotonic sub-pumping property, if

for each i ≥ m and Accept(R, uvi w) ≤ Accept(R, uvmw)

= a, there is a j > i, Accept(R, uv j w) ≤ Accept(R, uvi w).

Both periodic monotonic super-pumping property and periodic monotonic
sub-pumping property are called periodic monotonic property, too.

Definition 3.6. We define a loop of a lfqa R as a segment sequence, which starts
from some state q of R and ends also in q . A loop is called Jordanian, if each state
of it other than the starting state (ending state) q appears only once when the loop
is traversed. Thus, q1x1q1x2q1 is not a Jordanian loop, whereas q1x1q2x2q1 is a
Jordanian loop.
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Proposition 3.3.

1. All Jordanian loops of the same path form a total order.
2. There are only finitely many different Jordanian loops in a lfqa.

It is easy to prove that on the same path p there are no two different Jordanian
loops with the same starting state, since otherwise we would have two Jordanian
loops q0x1q1 . . . xkqk . . . qm−1xmqm and q0x1q1 . . . xkqk, where 0 < k < m and
q0 = qk = qm, which contradicts the definition of a Jordanian loop. In this way,
we can define a total order of all Jordanian loops on each path.

On the other hand, it is also easy to prove that for any lfqa R, there are only
finitely many Jordanian loops on its paths. To be convinced of this, we just note
that each Jordanian loop consists of finitely many nonrepeating segments. The total
number of segments in a lfqa is finite. Therefore the possibility of their nonrepeating
combinations is also finite, from which it follows the number of different Jordanian
loops is also finite.

Theorem 3.3. All lfqa of type A have periodic monotonic super-pumping
property.

Proof: Let R be a type A lfqa with n states. Let s = x1x2 . . . xm be an input string
accepted by R, where m > n. We do the following steps to prove the theorem:

Step 1. Find a loop on the initial accepting path.

Let p = q0x1q1x2q2 . . . qm−1xmqm be one of the paths of R accepting s with
Acceptp(R, s) = a. Then there must be at least two states q j and qk on p with
j < k, such that q j = qk . This shows that Q = q j x j+1q j+1 . . . qk−1xkqk forms a
loop of the path p. Among all possible loops of p, we choose its first Jordanian
loop. We have shown above that this is always possible.

Step 2. Pump the initial input string to get a new and enough large input
string.

Let v = x j+1 . . . xk , u = x1x2 . . . x j , w = xk+1 . . . xm , then all uvi w with i ≥
1 are accepted by R on the paths p(i) = q0x1q1 . . . (q j x j+1q j+1 . . . qk−1xk)i qk . . .

qm−1xmqm with the same acceptance degree as s = uvw is accepted by R on p. In
particular, the path p(m) = q0x1q1 . . . (q j x j+1q j+1 . . . qk−1xk)mqk . . . qm−1xmqm

accepts uvmw with Acceptp(m)(R, uvmw) = Accept(R, s) = a.

Step 3. Find all paths accepting this new string and calculate its acceptance
degree.

Note that p(m) may be not the only path accepting uvmw . Assume there are
r paths accepting uvmw , r > 1. For each fixed m, r must be finite. Assume these
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paths are ordered in an arbitrary, but fixed way. Denote them with p(m, i), 1 ≤
i ≤ r , where p(m, 1) = p(m). Thus p(m, i) means the i-th one among all paths
accepting uvmw . Each p(m, i) must have the form

qi
0x1qi

1 . . .
(
qi1

j x j+1qi1
j+1 . . . .qi1

k−1xk
)(

qi2
j x j+1qi2

j+1 . . . .qi2
k−1xk) . . .

× (
qim

j x j+1qim
j+1 . . . .qim

k−1xk
)
qi

k . . . qi
m−1xmqi

m . (22)

Assume they accept uvmw with the following acceptance degrees

Acceptp(m,i)(R, uvmw) = a(i), 1 ≤ i ≤ r (23)

Where a(1) = a. Thus,

Accept(R, uvmw) = ∪1≤i≤r a(i) (24)

In each p(m, i) there are m segments (qi1
j x j+1qi1

j+1 . . . .qi1
k−1xk)(qi2

j x j+1qi2
j+1 . . . .

qi2
k−1xk) . . . (qim

j x j+1qim
j+1 . . . .qim

k−1xk). We call each segment a loop unit. Each loop
unit contains the same substring of input symbols: x j+1 . . . xk .

Step 4. Pump the group of accepting paths collectively to get a new group of
paths.

Now consider the m states (qi1
j , qi2

j , . . . , qim
j ) on p(m, i). Among them there

must be at least two states qih(i)
j and qig(i)

j with h(i) < g(i), such that qih(i)
j = qig(i)

j ,

and such that for any f ′ and g′ with h(i) ≤ f ′ < g′ ≤ g(i), from qi f ′ = qig′
it

always follows that f ′ = h(i) and g′ = g(i). Similar to Proposition 3.2, we can
also prove that such loops form a total order for each p(m, i). We choose the first
one of them for each i .

Let dis (i) = g(i) − h(i), 1 ≤ i ≤ r (25)

Let H (p(m)) = lcm{dis(i)|1 ≤ i ≤ r} (26)

Where lcm means the least common multiple. On the basis of the construction
above, the value of H (p(m)) is uniquely determined given automaton R and path
p(m).

Let G(p(m), i) = H (p(m))/dis(i) (27)

Let v(i) be the symbol string, which is obtained from that part of p(m, i)
between qi,h(i)

j and qi,g(i)
j by eliminating all states in it (remember, it is called the

label of this path part). It is obvious that each v(i) is contained in vm . For each
i , decompose uvmw in u(i)v(i)w(i). For each path p(m, i), repeat the loop body
between qi,h(i)

j and qi,g(i)
j (consisting of g(i) − h(i) loop units) for G(p(m), i)

times. The result is a path p(m, i)′ accepting the string u(i)v(i)G(p(m),i)+1w(i)
with the same acceptance degree a(i) as u(i)v(i)w(i) is accepted on the path
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p(m, i). Since u(i)v(i)G(p(m),i)+1w(i) = uvm+H (p(m))w , we can rewrite p(m, i)′

as:

p(m, i)′ = p(m + H (p(m)), i), (28)

Step 5. Show that the pumped string is accepted by the new group of paths
at least as much as that string is accepted by the old group of paths before it is
pumped.

We have

Acceptp(m.i)’
(
R, u(i)v(i)G(p(m),i)+1w(i)

)

= Acceptp(m+H (p(m)).i)

(
R, uvm+H (p(m))w

)

= Acceptp(m,i)(R, uvmw) = a(i), 1 ≤ i ≤ r (29)

Acceptp(m,i)’,1≤i≤r

(
R, uvm+H (p(m))w

) = ∪1≤i≤r a(i) (30)

This shows that there is a number m + H (p(m)) > m, such that the accep-
tance degree of uvm+H (p(m))w is at least equal to the acceptance degree of uvmw .
We say “at least,” because it is not to exclude that there are still paths of R other
than those of p(m, i)′ for accepting uvm+H (p(m))w .

That means we have the following relation:

Accept
(
R, uvm+H (p(m))w

) ≥ Accept (R, uvmw) (31)

Step 6. Repeat the steps 4 and 5 once and once again, obtaining in this way
an infinite sequence of strings with monotonic nondecreasing acceptance degree,
where each string is produced as a pumped string of its previous one.

We take uvm+H (p(m))w as the new input string. Further we take p(m, 1)′

as the new accepting path and start the reasoning process above once again.
Namely, we calculate the number H (p(m, 1)′). If there are other paths accepting
uvm+H (p(m))w , then we call them p(m, j)′′ where 1 ≤ j ≤ r ′, r ′ is the number
of these paths (note that r ′ may be zero). We consider the set of all paths P =
{p(m, i)′, p(m, j)′′|1 ≤ i ≤ r, 1 ≤ j ≤ r ′} accepting uvm+H (p(m))w and calculate
the numbers G(p(m, 1)′, t), 1 ≤ t ≤ r + r ′. By repeating the loop units we then
get a set of new paths, which accept the string uvm+H (p(m,1))+H (p(m,1)′)w with an
acceptance degree at least equal to the acceptance degree uvm+H (p(m))w is accepted
by the set of paths P .

Therefore, in each case (whether or not p(m, i)′ are the only paths accepting
uvm+H (p(m))w) we have found a number m ′ > m + H (p(m)) such that

Accept (R, uvm’w) ≥ Accept
(
R, uvm+H (p(m))w

)
(32)
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Fig. 4. Lfqa with monotonic pumping property.

In this way, we have proved the existence of a chain m1, m2, m3, m4, . . ., such
that

m = m1 < m2 < m3 < m4 < . . . ,

Accept (R, uvm1 w) ≤ Accept (R, uvm2 w) ≤ Accept (R, uvm3 w) ≤ . . . (33)

This is just the periodic monotonic super-pumping property of R we wanted
to prove. �

Example 3.1. Assume the lfqa has the following form (Fig. 4):
R = (Q ={q0, q11, q21, q22, q31, q32, q33, q51, q52, q53, q54, q55, q f }, I = {q0},

T = {q f }, � = {δ(q0, y, qi1) = ai , δ(qi1, y, q f ) = ci , δ(qii , x , qi1) = bi , δ(q jk ,
x , q j,k+1) = b j ; where i = 1, 2, 3, 5; j = 2, 3, 5; k = 1, . . . , j − 1})

We follow the steps described in the proof of Theorem 3.3.

Step 1.

The number of states of R is n = 13. This automaton accepts the input string
s(1) = y(x)17 y, whose length m is 19, which is larger than 13. There is only one
path p1 = q0 y(q11x)17q11 yq f of R, which accepts s(1) with the acceptance degree
a1 ∩ b1 ∩ c1. The first Jordanian loop on p1 is q11xq11, such that we can decom-
pose s in uvw with u = y, v = x , w = x16y.

Step 2.

From the 19th power of the part v , we get the string s(2) = uv19w = y(x)35 y.
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Step 3.

The new string s(2) will not only be accepted on the path p(19, 1) = q0 y
(q11x)35q11 yq f , but also on the path p(19, 2) = q0 y(q51xq52xq53xq54xq55x)7q51

yq f . Thus we have

Accept (R, s(1)) ≤ Accept (R, s(2)) = (a1 ∩ b1 ∩ c1) ∪ (a5 ∩ b5 ∩ c5).

Step 4.

Consider the loop L1 = q11xq11 on p(19,1) and the loop L2 = q51xq52xq53

xq54xq55xq51 on p(19,2). We have h(1) = 2, g(1) = 3, h(2) = 2, g(2) = 7,
dis(1) = 1, dis(2) = 5, H (p(19)) = lcm{1, 5} = 5, G(p(19), 1) = 5, G(p(19),
2) = 1. That means if we repeat the loop L1 five times then we get p(24,1) =
q0 y(q11x)40q11 yq f from p(19,1), and if we repeat the loop L2 once then we get
p(24,2) = q0 y(q51xq52xq53xq54xq55x)8q51 yq f from p(19,2). In this way we get
two new paths, both of which accept the string s(3) = uv24w = y(x)40 y with the
same acceptance degree as s(2) was accepted by R.

Step 5.

The reasoning stated above shows that R accepts s(3) at least as much as it
accepts s(2). As a matter of fact, R accepts s(3) more than accepting s(2), because
s(3) is also accepted by p(24,3) = q0 y(q21xq22x)20q21 yq f . Thus we have

Accept (R, s(2)) ≤ Accept (R, s(3)) = (a1 ∩ b1 ∩ c1) ∪ (a2 ∩ b2 ∩ c2)

∪ (a5 ∩ b5 ∩ c5).

Step 6.

Consider the loop L3 = q21xq22xq21 on p(24,3). We have h(3) = 2, g(3) =
4, dis(3) = 2, H (p(24)) = lcm{1,5,2} = 10, G(p(24),1) = 10, G(p(24),2) = 2,
G(p(24),3) = 5. That means if we repeat the loop L1 10 times then we get
p(34,1) = q0 y(q11x)50q11 yq f from p(24,1), and if we repeat the loop L2 twice
then we get p(34,2) = q0 y(q51xq52xq53xq54xq55x)10q51 yq f from p(24,2), and if
we repeat the loop L3 five times then we get p(34,3) = q0 y(q21xq22x)25q21 yq f

from p(24,3). In this way we get three new paths, all of which accept the string
s(4) = uv34w = y(x)50 y with the same acceptance degree as s(3) was accepted by
R. That means R accepts s(4) at least as much as it accepts s(3). A simple investi-
gation shows that s(3) and s(4) have the same acceptance degree since this time the
number of accepting paths has not been increased by pumping (p(34,1), p(34,2),
and p(34,3) are the only paths accepting s(4)). That means we have

Accept (R, s(3)) = Accept (R, s(4))
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Pumping the three loops L1, L2, and L3 once again we get three new paths ac-
cepting s(5) = uv44w = y(x)60 y. They are p(44,1) = q0 y(q11x)60q11 yq f ,
p(44,2) = q0 y(q51xq52xq53xq54xq55x)12q51 yq f and p(44,3) = q0 y(q21xq22x)30

q21 yq f .
Now there is no equality between Accept (R, s(4)) and Accept (R, s(5)), be-

cause now there is a fourth path p(44,4) = q0 y(q31xq32xq33x)20q31 yq f , which
also accepts s(5). It is

AcceptP(44,4)(R, s(5)) = (a3 ∩ b3 ∩ c3)

Therefore, the relations between the acceptance degrees are:

Accept (R, s(4)) = (a1 ∩ b1 ∩ c1) ∪ (a2 ∩ b2 ∩ c2) ∪ (a5 ∩ b5 ∩ c5)

≤ (a1 ∩ b1 ∩ c1) ∪ (a2 ∩ b2 ∩ c2) ∪ (a3 ∩ b3 ∩ c3)

∪ (a5 ∩ b5 ∩ c5) = Accept (R, s(5))

Consider the loop L4 = q31xq32xq33xq31 on p(44,4). We have h(4) = 2,
g(4) = 5, dis(4) = 3, H (p(44)) = lcm{1, 5, 2, 3} = 30, G(p(44), 1) = 30, G(p
(44), 2) = 6, G(p(44), 3) = 15, G(p(44), 4) = 10. That means if we repeat the
loop L1 30 times then we get p(74,1) = q0 y(q11x)90q11 yq f from p(44,1), and
if we repeat the loop L2 six times then we get p(74,2) = q0 y(q51xq52xq53xq54

xq55x)18q51 yq f from p(44,2), if we repeat the loop L3 15 times then we get
p(74,3) = q0 y(q21xq22x)45q21 yq f from p(44,3), and if we repeat the loop L4

10 times then we get p(74,4) = q0 y(q31xq32xq33x)30q31 yq f from p(44,4). In this
way we get four new paths, all of which accept the string s(6) = uv74w = y(x)90 y
with the same acceptance degree as s(7) is accepted. From the definition of R it is
easy to see that there is no other path accepting s(6). Therefore we have

Accept (R, s(5)) = Accept (R, s(6))

It is also easy to check that in general the following relation holds:

Accept (R, s(5)) = Accept (R, s(t)), for all t > 5, (34)

where s(t) = uv30t−106w = y(x)30t−90 y for all t > 5.
We have thus proved the existence of a sequence of accepted input strings

s(t) with monotonically nondecreasing acceptance degrees, where each s(t) has
the form uv f (t)w , where s(1) = uvw is the original input string.

Lemma 3.1. For any given lfqa R, the set of acceptance degrees it may take
when accepting input strings is finite.

Proof: If the lattice l, on which R is based, is finite, then the conclusion is obvious.
Otherwise, we reason as follows. Each lfqa has only finitely many (transition) arcs.
On each arc there are only finitely many attached (input symbol, lattice value) pairs.
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In case of type A lfqa, the acceptance degree of each input string s is calculated
as the disjunction of finitely many conjunctions, where each conjunction consists
of finitely many lattice values. In case of type B lfqa, the acceptance degree of
each input string s is calculated as the conjunction of finitely many disjunctions,
where each disjunction consists of finitely many lattice values. In order to avoid
ambiguity, we call the former a second level disjunction of finitely many first level
conjunctions, and the latter as a second level conjunction of finitely many first
level disjunctions.

Since the number of different lattice values appearing on the transitions of any
given automaton is finite, the number of their different combinations (conjunctions)
is also finite. That means the number of different values a first level conjunction
may produce is finite.

Similarly, we can prove that the number of different values a first level dis-
junction may produce is finite.

For a type A lfqa, the acceptance degree is calculated as the second level
disjunction of finitely many first level conjunctions, which themselves have only
finitely many possible values. For a type B lfqa, the acceptance degree is calculated
as the second level conjunction of finitely many first level disjunctions, which
themselves have only finitely many possible values. Therefore, for both type A
lfqa and type B lfqa, the set of acceptance degrees it may take when accepting
input strings is finite.

It is easy to complete the proof by using mathematical induction. �

With help of this lemma, we can prove a more exact theorem.

Theorem 3.4. All lfqa of type A have periodic pumping property.

Proof: In Theorem 3.3 we have proved the periodic monotonic super-pumping
property for all type A lfqa with the existence of an ascending chain m1, m2, m3,
m4, . . . and a nondescending chain (33). Now we start from the number m1 = m
and do the reasoning procedure in the following way:

Let n1 = m1.

If for all mk , whenever k > 1 and Accept (R, uvkw) ≥ Accept (R, uvmw), it is al-
ways Accept (R, uvmk w) = Accept (R, uvm1 w), then the periodic pumping prop-
erty is already proved.

Otherwise, there must be a k > 1 with Accept(R, uvmk w) 	= Accept(R,
uvm1 w)

Let n2 = mk .
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If for all j , whenever j > k, it is always

Accept (R, uvm j w) = Accept (R, uvmk w), (35)

then the periodic pumping property is already proved.
Otherwise, there must be a j > k such that Accept (R, uvm j w) 	= Accept (R,

uvmk w)

Let n3 = m j .

Since according to Lemma 3.1 there are only finitely many acceptance degree
values, this procedure of constructing a strictly ascending super-pumping chain
must terminate after finitely many steps. That means, the ni cannot form an infi-
nite sequence. The conclusion we can draw is that there is an infinite ascending
sequence of positive integers p1, p2, . . . (which is a subsequence of the sequence
m1, m2, . . . ), such that

Accept(R, uv p j w) = Accept(R, uv p1 w) for all j > 0. �

In fact, a more powerful theorem is provable based on the following:

Example 3.2. The lfqa given in Example 3.1 has periodic pumping property. To
be convinced of this fact, let the number m in Theorem 3.3 equal to 60, then for
each i ≥ m, we just let j equal to the least multiple of 30, which is larger than i .

Definition 3.7. (Generalized Pumping Property). A lattice-valued finite state
quantum automaton R is said to have generalized pumping property, if there
exists a positive integer n, which depends only on R such that for each input
string s ∈ �∗, with |s| > n, it is always possible to decompose s in s = uvw ,
such that |v| ≥ 1, and there exists a number M > 0, such that for each i ≥ 1,
Accept (R, uvi M w) = Accept(R, uv M w).

R is said to have generalized super-pumping property, if

Accept (R, uv M w) ≤ Accept (R, uvi M w) (36)

holds instead. R is said to have generalized sub-pumping property, if

Accept (R, uvi M w) ≤ Accept (R, uv M w) (37)

holds instead.
Two obvious conclusions can be drawn from this definition. First, in case of

m = 1, the generalized pumping property is equal to the pumping property defined
in Definition 2.1. Second, generalized pumping property is a strengthened form of
periodic pumping property.

Theorem 3.5. All lfqa of type A have generalized pumping property.
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Proof: The main idea of proving this theorem is already contained in the proof
of Theorem 3.3. But here we will go another way. We do not want to iterate the
reasoning steps as we did there. Rather, we will use a global and concise proof
procedure by summarizing the idea presented in Theorem 3.3.

Step 1. Find a loop.

Let R be a lfqa of type A with n states. Let s = x1x2 . . . xm be an input
string accepted by R, where m > n. Let p = q0x1q1x2q2 . . . qm−1xmqm be one
of the paths of R accepting s with Acceptp(R, s) = a. Then we can always find
two states q j and qk on p with j < k, such that q j = qk , and such that for all
states qh = qg with j ≤ h < g ≤ k, it is always h = j and g = k. This shows that
Q = q j x j+1q j+1 . . . qk−1xkqk forms a Jordanian loop of the path p. W.l.o.g., we
assume Q is the first Jordanian loop of p.

Step 2. First pump.

Let v = x j+1 . . . xk , u = x1x2 . . . x j , w = xk+1 . . . xm , then all uvi w with i ≥
1 are accepted by R on the paths p(i) = q0x1q1 . . . (q j x j+1q j+1 . . . qk−1xk)i qk . . .

qm−1xmqm with the same acceptance degree as s = uvw is accepted by R on p. In
particular, the path p( f ) = q0x1q1 . . . (q j x j+1q j+1 . . . qk−1xk) f qk . . . qm−1xmqm

accepts uv f w with Acceptp( f )(R, uv f w) = Acceptp(R, s) = a, where f =
lcm{t |1 ≤ t ≤ n + 1}.

Let the set of paths accepting uv f w be p( f, i), 1 ≤ i ≤ r . Then each p( f, i)
must have the form qi

0x1qi
1 . . . (qi1

j x j+1qi1
j+1 . . . qi1

k−1xk)
(
qi2

j x j+1qi2
j+1 . . . qi2

k−1xk
)
. . .

(
qi f

j x j+1qi f
j+1 . . . qi f

k−1xk
)
qi

k . . . qi
m−1xmqi

m . (38)

Let

Acceptp( f,i)(R, uv f w) = a(i), 1 ≤ i ≤ r (39)

Thus

Accept (R, uv f w) = ∪1≤i≤r a(i) (40)

where p( f, 1) = p( f ) and Acceptp( f )(R, uv f w) = a = a(1).

Step 3. Find a group of loops.

For each i , consider the f states (qi1
j , qi2

j , . . . , qi f
j ) of the path p( f, i). Since

f > n (the number of states), there must be at least two states qih(i)
j and qig(i)

j on

p( f, i) with 1 ≤ h(i) < g(i) ≤ n + 1, such that qih(i)
j = qig(i)

j , and such that for

any f ′ and g′ with h(i) ≤ f ′ < g′ ≤ g(i), from qi f ′ = qig′
it always follows that
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f ′ and g′ are equal to h(i) and g(i). That part v(i) of the path p( f, i), which is
between qih(i)

j and qig(i)
j , forms a loop. For each i , we consider a loop with least

g(i). If there are more than one loop with least g(i), we take that one among them
with least h(i). It is easy to prove that this loop is uniquely determined for each i .
Since g(i) ≤ n + 1 the number g(i) − h(i) must be a divisor of f .

Step 4. Pump iteratively—each time enlarges the accepting paths by f loop
bodies.

Repeat the part v(i) for f/(g(i) − h(i)) times for each i , we get a new path
p(2 f, i) out of p( f, i). Each of the paths p(2 f, i) accepts the same string uv2 f w
with the same acceptance degree as uv f w is accepted by p( f, i).

It is then easy to see that the string uv j f w with arbitrary j ≥ 1 is accepted
by each path p( j f, i) with

Acceptp( j f,i)(R, uv j f w) = a(i), 1 ≤ i ≤ r (41)

where p( j f, i) is produced by pumping the path p(( j − 1) f, i) when repeating
the loop (qih(i)

j x j+1qih(i)
j+1 . . . qih(i)

k−1 xk) . . . (qi(g(i)−1)
j x j+1qi(g(i)−1)

j+1 . . . qi(g(i)−1)
k−1 xk) for

f/dis(i) times.

Step 5. Conclude the proof with a chain of relations.
There may be other paths, which also accept uv j f w . Therefore, in general

it is

Accept(R, uv f w) ≤ Accept(R, uv j f w), for any j ≥ 1 (42)

This shows that R satisfies the generalized super-pumping property. But this
is not yet all. Because of the finiteness of the number of different acceptance degree
values in a lfqa, there must be a number J > 0, such that

Accept(R, uv j f w) = Accept(R, uv J f w), for any j ≥ J (43)

In particular,

Accept (R, uv j J f w) = Accept (R, uv J f w), for any j ≥ 1 (44)

Rename J f as M , this is the generalized pumping property described in
Definition 3.7. �

Example 3.3. The lfqa given in Example 3.1 satisfies the generalized pumping
property. To be convinced of this fact, calculate f = lcm{t |1 ≤ t ≤ 14} = 360360.
It is easy to see that J = 1 is enough to make the following relation valid:

Accept (R, uv j f w) = Accept (R, uv J f w), for any j ≥ J

Thus it is enough to let M = f = 360360.
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In fact, the number 360360 is unnecessarily too large in this particular case.
We only need to let the number M equal to 60, then for each i ≥ 1, we have

Accept (R, uv j M w) = Accept (R, uv M w), for any j ≥ 1

This example shows that the characteristic number M , and therefore the
acceptance degree of the input sequence, is not uniquely determined.

Above we have discussed various pumping properties of type A lfqa: the
periodic monotonic super-pumping property, the periodic pumping property and
the generalized pumping property. Now what about type B lfqa? Do they have
the same pumping properties? The answer to this question is not trivial, because
we have used the technique of loop repeating in our proof procedure. This may
cause a mismatching of acceptance degrees along different paths, which accept
the same input string, see Example 3.4.

Example 3.4. In Fig. 5, the input string s = xyyx is accepted on both paths
p1 = q0xq1 yq1 yq2xq f and p2 = q0xq3 yq4 yq3xq f . Whereas s is accepted on p1

with the degree a ∩ b ∩ c ∩ d , it is accepted on p2 with e ∩ f ∩ g ∩ h. The total
(combined) acceptance degree is then (a ∪ e) ∩ (b ∪ f ) ∩ (c ∪ g) ∩ (d ∪ h). If we
repeat the loop q1 yq1 of p1 twice and the loop q3 yq4 yq3 of p2 once, then we get two
new paths p′

1 and p′
2. Each of these two paths accepts the string s ′ = x(yy)2x with

the same acceptance degree as p1 and p2 accepted the string xyyx respectively. It
is therefore obvious that the combined acceptance degree of s ′ remains the same
as that of s was, if the lfqa is of type A. But the total (i.e. the combined) acceptance
degree of s ′ is (a ∪ e) ∩ (b ∪ f ) ∩ (b ∪ g) ∩ (b ∪ f ) ∩ (c ∪ g) ∩ (d ∪ h) if the lfqa
is of type B. Let a = c = d = f = 1, then s is accepted with the degree 1, but s ′

is accepted with the degree (b ∪ g).
This shows the difference between type A and type B automata. As a result, we

cannot copy the proof procedure of type A for type B. Fortunately, this difference
will not prohibit us from proving a theorem for type B lfqa similar to that of type
A lfqa.

Theorem 3.6.

All lfqa of type B have periodic monotonic super-pumping property
All lfqa of type B have periodic pumping property
All lfqa of type B have generalized pumping property

Proof: The first three proof steps are similar to those in the proof of Theorem 3.5.
But Step 4 has to be changed to: pump iteratively—each time enlarges the accepting
paths by 2 f loop bodies. That means, we get a new path p(3 f, i) out of p( f, i) by
repeating the loop body v(i) for 2 f/(g(i) − h(i)) times for each i .
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Fig. 5. Repeating loops may cause mismatch of acceptance degrees.

In order to calculate the acceptance degrees of input strings, assume that for
any n, the number of paths accepting uvnw is r (n) and

Acceptp(n,i),1≤i≤r (n)(R, uvnw) = a(n),

where

a(n) = a1(n) ∧ a2(n) ∧ a3(n),

Acceptp(n,i),1≤i≤r (n)(R, u, uvnw) = a1(n),

Acceptp(n,i),1≤i≤r (n)(R, vn , uvnw) = a2(n),

Acceptp(n,i),1≤i≤r (n)(R, w , uvnw) = a3(n),

where

AcceptP (R, si , s1s2 . . . sm) = a

means that the (partial) acceptance degree of si by the path set P is a, where si is
a substring of the input string s = s1s2 . . . sm , which is accepted by P .

Now we consider the path set p(3 f, i), 1 ≤ i ≤ r (3 f ). Let

imax = Min {i |1 ≤ i ≤ r (3 f ) and g(i) = Max {g(t)|1 ≤ t ≤ r (3 f )}}
then we have: for all i ,

g(i) ≤ g(imax) < g(imax) + f ≤ g(i) + 2 f (45)
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Assume that g(imax) corresponds to the p-th state of the path p(3 f, imax).
Since all paths of p(3 f, i) have the same length, it follows from relation (45) that
each path p(3 f, i) contains a segment qi

px p+1qi
p+1 . . . qi

p+ f −1x p+ f qi
p+ f , where

qi
p+ f = qi

p for all i . The last assertion is guaranteed by the fact that f is a
common multiple of all g(i) − h(i). This shows that all paths have a loop Li =
qi

px p+1qi
p+1 . . . qi

p+ f −1x p+ f qi
p of the same size and with the same indices.

Pumping these paths by repeating this loop will yield new paths. Each of
them accepts the string uv (t+3) f w after t times of pumping.

By a simple reasoning similar to that in the proof of Theorem 3.5 it is then
easy to see that the string uv j f w with arbitrary j ≥ 3 is accepted at least by the
path set {p( j f, i)|1 ≤ i ≤ r (( j − 1) f )} where {p( j f, i)|1 ≤ i ≤ r (( j − 1) f )} is
produced by pumping the path set {p(( j − 1) f, i)|1 ≤ i ≤ r (( j − 1) f )} simulta-
neously when repeating the loop Li for f/dis(i) times. Since each p( j f, i) can be
transformed in p(( j + 1), i) only by increasing the number of loop Li once more,
we have

r ( j f ) ≤ r (( j + 1) f )

In the following we will use the notation {p( j f, i)} for {p( j f, i)|1 ≤ i ≤ r ( j f )}.
Accept{( j f,i)}(R, Li , uv j f w)

= Accept{p(( j+1) f,i)|1≤i≤r ( j f )}(R, (Li )
2, uv ( j+1) f w) for j ≥ 3

therefore,

Accept{( j f,i)}(R, u, uv j f w) = Accept{p(( j+1) f,i)|1≤i≤r ( j f )}
(
R, u, uv ( j+1) f w

)

Accept{( j f,i)}(R, v j f , uv j f w) = Accept{p(( j+1) f,i)|1≤i≤r ( j f )}
(
R,v ( j+1) f , uv ( j+1) f w

)

Accept{( j f,i)}(R, w , uv j f w) = Accept{p(( j+1) f,i)|1≤i≤r ( j f )}
(
R, w , uv ( j+1) f w

)

In general it is

{p(( j + 1) f, i)|1 ≤ i ≤ r ( j f )} ⊆ {p(( j + 1) f, i)} for any j ≥ 3

therefore,

Accept (R, uv j f w) = Accept{p( j f,i)}(R, uv j f w) = Accept{p(( j+1) f,i)|1≤i≤r ( j f )}
(
R, u, uv ( j+1) f w

) ≤ Accept{p(( j+1) f,i)}
(
R, uv ( j+1) f w

) = Accept (R, uv j f w)

(46)

In this way we get a chain of input strings uv j f w( j ≥ 3) with monotonic non-
decreasing acceptance degrees, where we have made use of Proposition 2.1. Thus
the monotonic super-pumping property of type B quantum automata is proved.
With help of Lemma 3.1 the validness of periodic pumping property for Type B
quantum automata is also obvious.



1216 Lu and Zheng

That means there exists a number J ≥ 3 such that

Accept (R, uv j f w) = Accept (R, uv J f w) j ≥ J

Let M = J f . It is then clear that

Accept (R, uv M w) = Accept (R, uv j M w) j ≥ 1

This is nothing else than the generalized pumping property of type B quantum
automata. �

Example 3.5. Reconsider the lfqa discussed in Example 3.4. Calculate f =
lcm{t |1 ≤ t ≤ 6}12 = 30. Let s = xyyx = uvw , where u = x , v = y, w = yx .
Raise v to the 30th power, we have uv30w . It is easy to see that there are two path
accepting uv30w , where p(30,1) = p1 = q0x(q1 y)30q1 yq2xq f and p(30,2) = q0x
(q3 yq4 y)15q3xq f . Repeat the loop in p(30,1) 60 times more and that in p(30,2)
45 times more, we get the 3 f = 90th power of v and two paths p(90,1) =
p1 = q0x(q1 y)90q1 yq2xq f and p(90,2) = q0x(q3 yq4 y)45q3xq f . We have
h(1) = 2, g(1) = 3, h(2) = 2, g(2) = 4. Thus

imax = 2, g(imax) = 4, g(imax) + f = 34

If we unfold them in a plain sequence and rename the states as q ′ to avoid notational
ambiguity, then

P(90, 1) = q0xq ′
1 y . . . q ′

3 yq ′
4 yq ′

5 . . . q ′
31 yq ′

32 yq ′
33 . . . q91 yq92xq f .

P(90, 2) = q0xq ′′
1 y . . . q ′′

3 yq ′′
4 yq ′′

5 . . . q ′′
31 yq ′′

32 yq ′′
33 . . . Q′′

91 yq ′′
92xq f

where

for all 0 < i < 92, q ′
i = q1, q ′

92 = q2,

for all 0 < i < 92, q ′′
i = q3 if i is odd, q ′′

i = q4 if i is even.

In particular we have q ′
3 = q ′

33 = and q ′′
3 = q ′′

33.

This means that the two paths p(90,1) and p(90,2) have a loop of the
same size and with the same indices. They are q ′

3 yq ′
4 yq ′

5 . . . q ′
31 yq ′

32 yq ′
33 and

q ′′
3 yq ′′

4 yq ′′
5 . . . q ′′

31 yq ′′
32 yq ′′

33 respectively. Repeating this loop on both paths simul-
taneously generates a sequence of path pairs, which accept the input sequence
uv j f w( j ≥ 3) with monotonically nondecreasing acceptance degrees. But we have
got more. We have shown the periodic pumping property as well. Finally we have
also the generalized pumping property by letting M = 90.

It may be adequate to give a note at this place: the periodic pumping property
can be derived from the generalized pumping property. On the other hand, the
monotonic super-pumping property can be derived from the periodic pumping
property.
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4. CONCLUSIONS

It is well known that the classical finite state automata satisfy the pumping
lemma. So we want to see whether lattice-valued quantum automata also have
pumping property or not. In this paper it is shown that not all lattice-valued quan-
tum automata possess the strict pumping property. Then we have extended the
definition of pumping property and proposed the concepts of super(sub)-pumping
property, periodic pumping property, monotonic pumping property, and general-
ized pumping property. We have proved that all lattice-valued quantum automata
(including those of type A and those of type B) have monotonic super-pumping
property. In addition, it is proved that all lattice-valued quantum automata have
periodic pumping property and generalized pumping property.
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